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ASYMPTOTIC METHODS OF SOLVING THE SYSTEM OF KINETIC EQUATIONS 

OF A GASEOUS MIXTURE* 

V.V. STRUMINSKII 

The possibilities of the Chapman-Enskog method and a method proposed in 
this paper for solving the system of kinetic equations of a gaseous 
mixture are considered. It is shown that, for initial assumptions of 
the first order, the proposed method gives much more complete 
information on the system. 

Methods of solving the system of kinetic equations of a gaseous mixtures are of 
considerable scientific and practical importance. The first approximations of the solution 

were obtained by Boltzmann himself. At the beginning of the present century, the 
Chapman-Enskog asymptotic method was developed to solve the kinetic Boltzmann equation. This 
method was then used to solve the system of kinetic equations for gaseous mixtures, where 

the important assumption was made that, in the zeroth approximation, the contribution of all 
the collision integrals to the change in the distribution functions of the individual 

components of the gas is zero. This is justified in extremely limited cases and only for a 
gas which is in a state close to a state of thermodynamic equilibrium. These assumptions led 
to a considerable reduction in the amount of information on the behaviour of the dynamic 

system and, in particular, on the motion of the individual components of gaseous mixtures. 
In view of this, at the beginning of the Seventies we proposed a new, more-general, 

asymptotic method of solving the system of kinetic equations of a gaseous mixture, which 
enables the laws of motion of the individual components of the gaseous mixture to be 
determined for a system which is in a state quite far from a state of equilibrium, and then 
to determine the mean-mass parameters of this system as a whole. When developing this method 
important assumptions were also made regarding the contribution made by the different 
collision integrals to the change in the distribution functions. 

In this paper we will consider both of these methods and the initial assumptions which 

underlie them. We will show that these assumptions are of the same order, although in the 

method proposed here more-complete information is obtained on the behaviour of the whole 

system. The problem of when it is best to use one or other method Will alS0 be considered. 
The system of kinetic equations of a gaseous mixture in dimensionless variables can be 

written in the form 

where Ed is the set of small parameters defining the collision frequency of the molecules, 

f, are dimensionless functions of time, the coordinates and the parameters of the system, 

n, is the number of particles per unit volume, m, are the masses of the molecules, T, are 
the temperatures and U, are the mean velocities characterizing the given component. 

The parameters E,~<I which occur in Eq.(l) and which satisfy the approximate equation 

%Z = llh,,, are purely tentative. The true contribution of the collision integrals to the 

change in df,ldt is determined by the distribution functions and the laws of interaction of 

the molecules themselves. 
According to the Chapman-Enskog method /l/, the allowable state of a gaseous mixture is 

such that all the E,~ are approximately equal to a small parameter E. In this case, we 

obtain from Eq.(l) 

Assuming, as is usually done, that 
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we obtain 
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(4) 

In the zeroth approximation, all the fsW are locally Maxwell functions, defined by 
the mean-mass parameters of the flow U,, To,ns and m,, and the contribution of collision 
integrals to the change in df,@)ldt is zero. We obtain the Navier-Stokes, Barnett etc. 

systems of equations for determining the mean-mass parameters of the flow from the conditions 
for the inhomogeneous integral equations to be solvable. To a first approximation, in the 
Navier-Stokes systems of equations completely defined values of the viscosity and thermal 
conductivity are obtained. Of course, for the assumptions used in the method these values of 
the coefficients may not be completely accurate, but can be refined in subsequent approxi- 
mations. 

The following approximation was calculated in /2/ using certain assumptions. It was 
shown that in addition to the purely Barnett (non-linear) terms, terms also appear in this 
approximation that are linear with respect to the parameter gradients, which introduce cor- 
rections to the transfer coefficients. The value of these corrections will be determined by 
the state of the gaseous system. The more accurately the assumptions made in the method are 
satisfied in the system, the closer it will be to the state of equilibrium, and the less the 
higher approximations that will be required and the smaller will be the value of the correc- 
tions. 

As can be seen, the Chapman-Enskog method only determines the mean-mass parameters of 
the flow, which is in a state close to equilibrium. It says absolutely nothing about the law 
of motion of the individual components of the gaseous mixture. 

In the method proposed in /3/, it was assumed that the state of the gaseous mixture 
deviates quite considerably from a state of equilibrium and such that we can assume that when 
T=S, the value of %Z is equal to the small parameter e, and for all the remaining ones 

e*r G 1. In this case, system (1) can be written, in particular, in the form 

After making fundamental assumptions both in the Chapman-Enskog method and in the method 
described in /3/, we obtain system (5) from system (l), which is already quite sufficient (as 
was stated repeatedly in /4/) to obtain all further information on the gas-dynamic behaviour 
of the system. 

From (3) and (5) we also obtain the following recurrent system of equations: 

I (pfy) = 0, (6) 

In the zeroth approximation, the function f8@) will also be locally Maxwellian, but 
now it is defined by the parameters U,, T, and n,, characerising the given component of the 
gas. We obtain from the first inhomogeneous equation of the system of Eqs.(6) the following 
gas-dynamic system of equations: 

(7) 
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where o, and Q,, are well-known expressions and integrals. 
This generalized system of Navier-Stokes equations emphasizes one again that the 

structure of the classical system of Navier-Stokes equations is uniquely determined by the 
assumptions made in deriving (2). Exactly the same structure of the generalized system of 
Navier-Stokes Eqs.(7) is uniquely defined by the assumptions made in deriving (5). In both 
cases, on changing from one gaseous system to another, close to the initial one, only the 
transfer coefficients may be changed. Here one must bear in mind the following: the better 
the gaseous system satisfies the initial assumptions, the more accurately the transfer 
coefficients in the first approximation will correspond to reality. The need to resort to 
higher approximations will be unnecessary, although there is always the possibility of 
refining the transfer coefficient using higher approximations. 

For the Chapman-Enskog method, this possibility was proved in /2/. For our method, it 
was also shown in /5/ that higher approximations contain terms that are linear in the gradients 
of the flow parameters, and their values were approximately determined. 

Hence, the kinetic equations for a gaseous mixture are far more complex than for a 
single-component gas. In a gaseous mixture there are an enormous number of quite different 

states. 
A comparatively small number of states of gaseous mixtures, close to the state of thermo- 

dynamic equilibrium, can be described, to a first approximation, by the Chapman-Enskog method. 
To a second approximation, the structure of the gas-dynamic Navier-Stokes equations remains 

unchanged, if we ignore the Bernett terms, and the transfer coefficient can be refined. 

Unfortunately, the laws of motion of the components of the gaseous mixture cannot be determined 

by this method. 
A large number of gaseous mixtures, not in a state of thermodynamic equilibrium, can be 

described, to a first approximation, by our method. The system of Navier-Stokes equations, 

which we have generalized, is not changed in either the second or subsequent approximations 

if we ignore the quadratic Barnett terms. Only the transfer coefficients can be refined in 

subsequent approximations. 
We will consider a number of specific examples which illustrate the possibilities of our 

method. 
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We will use the new method to describe the structure of intense shock waves. We note 
first of all that a number of papers have been published on the construction of the theory 
of shock waves using the Navier-Stokes equations, in which agreement with experiment was only 

obtained for low Mach numbers. Beginning with the papers by Mott-Smith, the initial kinetic 

equation was used in the theory with additional assumptions and empirical data. But this 

also does not enable one to consider the region of high velocities. We have attempted to 
provide a further generalization of the kinetic theory in a number of papers. 

By dispensing with the assumption that the distribution function is symmetrical 16, 7/, 
to describe individual groups of molecules we obtained a system of kinetic equations similar 
to the system of equations for gaseous mixtures. The method described above was applied to 

this system, and when only the diffusion terms were taken into account, ignoring the viscosity 
and thermal conductivity of the gas (the zeroth approximation), we were able to obtain a 
solution in analytical form. 

Theory and experiment are compared in Fig.1. The Prandtl thickness of the shockwave 
is given by the expression 6 = (p, - P_)i (dp/d&ar, where M is the Mach number. We used the 
most reliable experiments for argon at a temperature of 300°C. 

We will consider, as the second example, the flow of a binary gaseous mixture in thin 

channels and capillary tubes. Starting from (7). we obtain the following system of two 
mutually connected ordinary differential equations: 
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The accurate solution will have the form 

and shows that the effect is largely determined by the intensity of the interaction of the 
components of the gas, which is characterized by the parameter k,R (Fig.2). In the case 
of weak interaction, when the value of this parameter is small (k,,R = 0.5, 1 and 21, the 
components of the binary mixture behave as though they are independent. It is interesting 
to 
of 
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note that in the case of strong interaction <k,R = CO), the flow again acquires the form 
Poiseuille flow with the overall viscosity of the components and with the overall gradient. 
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EXACT SOLUTIONS OF THE NAVIER-STOKES EQUATIONS* 

V.I. GRYN 

Considering steady Hiemenz-Birman flows only, a study is made of flows 
between porous walls, on the assumption that fluid is injected and 
extracted at identical rates. It is shown that wherever fluid is being 
extracted a boundary layer forms at the wall. A class of unsteady 
two-dimensional flows, more general than Hiemenz-Birman flow, is 
investigated. In a class of flows generalized Jeffrey-Hamel flow, 
attention is devoted to flows in a dihedral angle between porous walls 
when fluid is injected and extracted, A class of steady (unsteady] 
two-dimensional flows is found, in which flow between coaxial porous 
cylinders, with fluid injected and extracted at arbitrary rates, is 
considered. Some exact solutions of the steady- and unsteady-state 
Navier-Stokes equations are found. 
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